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Abstract

The emergence of plasmid-mediated multidrug resistance (MDR) among enteric bacteria presents a serious
challenge to the treatment of bacterial infections in humans and animals. Recent studies suggest that avian
Escherichia coli commonly possess the ability to resist multiple antimicrobial agents, and might serve as reservoirs
of MDR for human extraintestinal pathogenic Escherichia coli (ExPEC) and commensal E. coli populations. We
determined antimicrobial susceptibility profiles for 2202 human and avian E. coli isolates, then sought for
associations among resistance profile, plasmid content, virulence factor profile, and phylogenetic group. Avian-
source isolates harbored greater proportions of MDR than their human counterparts, and avian ExPEC had
higher proportions of MDR than did avian commensal E. coli. MDR was significantly associated with possession
of the IncA/C, IncP1-a, IncF, and IncI1 plasmid types. Overall, inferred virulence potential did not correlate with
drug susceptibility phenotype. However, certain virulence genes were positively associated with MDR, in-
cluding ireA, ibeA, fyuA, cvaC, iss, iutA, iha, and afa. According to the total dataset, isolates segregated signifi-
cantly according to host species and clinical status, thus suggesting that avian and human ExPEC and
commensal E. coli represent four distinct populations with limited overlap. These findings suggest that in
extraintestinal E. coli, MDR is most commonly associated with plasmids, and that these plasmids are frequently
found among avian-source E. coli from poultry production systems.

Introduction

Extraintestinal pathogenic Escherichia coli (ExPEC)
have received considerable attention because of their

complex nature and ability to cause a variety of important
extraintestinal diseases in humans and animals ( Johnson and
Russo, 2002). Several subpathotypes of ExPEC have also been
described, based on host source, specific disease syndrome,
and virulence genotype. These include uropathogenic E. coli
(UPEC) causing urinary tract infection (UTI), neonatal men-
ingitis-associated E. coli (NMEC) causing meningitis of the

newborn, and avian pathogenic E. coli (APEC) causing coli-
bacillosis in poultry (Kaper, 2005). These diseases are costly to
the human health care system and poultry industries, and
cause considerable morbidity and mortality. Thus, the control
of these diseases is an important area of focus.

It has been shown that ExPEC commonly possess large,
transmissible plasmids encoding multidrug resistance (MDR)
( Johnson and Nolan, 2009). By comparison, less is known
about the prevalence of such plasmids in commensal E. coli.
Further, the scope of horizontal gene transfer in relation to the
dissemination of MDR in E. coli in the fecal and vaginal flora
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of healthy humans and animals is not known. Since ExPEC
that cause clinical disease are thought to emerge from the fecal
microbiota of healthy hosts, it is plausible that some com-
mensal intestinal E. coli could also harbor large, transmissible
plasmids conferring a multidrug-resistant phenotype. No-
tably, subsets of avian E. coli may represent a zoonotic threat
via the consumption of contaminated poultry meat (Ewers
et al., 2007; Johnson et al., 2007a, 2008, 2009a; Smith et al.,
2007b). However, it is unclear whether these subsets also
represent a threat with regard to the dissemination of MDR to
human bacterial populations, which would be more likely if
MDR in avian strains is encoded on mobile genetic elements.

To address these important knowledge gaps, we assessed
2202 previously characterized, disease-associated ExPEC and
commensal E. coli from healthy human and avian hosts for
their antimicrobial susceptibilities. Our goal was to combine
these data with existing information to determine the associ-
ations among antimicrobial susceptibility, plasmid content,
and virulence potential, in relation to host species and clinical
origin.

Materials and Methods

Bacterial strains

The 2202 study isolates originated from a variety of sour-
ces, isolated between 1990 and 2005 (Table 1) (Obata-Yasuoka
et al., 2002; Johnson et al., 2002a, 2002b, 2008; Rodriguez-Siek
et al., 2005a, 2005b). All these isolates have been previously
characterized for their virulence gene content and phyloge-
netic group membership, and some have been previously
characterized for plasmid content ( Johnson et al., 2007c). All
isolates were stored frozen at - 80�C in Brain Heart Infusion
Broth (Difco Laboratories) with 10% glycerol and had un-
dergone limited passage since their initial isolation in an at-
tempt to ensure their genetic stability.

Antimicrobial susceptibility

All E. coli isolates were examined for their antimicrobial
susceptibilities by using the National Antimicrobial Re-
sistance Monitoring System panels CMV5CNCD (some APEC
isolates) and CMV1AGNF (remaining isolates) by Trek Di-
agnostics according to Food and Drug Administration, Uni-
ted States Department of Agriculture, and Clinical Laboratory
Standards Institute recommendations (Clinical and Labora-
tory Standards Institute, 2010). A 96-well microtiter plate was

used to test the susceptibility of strains to the following 14
antimicrobials (drug name abbreviation; breakpoint used):
amikacin (AMI; ‡ 64 lg/mL), amoxicillin/clavulanic acid
(AUG; ‡ 32/16 lg/mL), ampicillin (AMP; ‡ 32 lg/mL), ce-
foxitin (FOX; ‡ 32 lg/mL), ceftiofur (TIO; ‡ 8 lg/mL), cef-
triaxone (AXO; ‡ 4 lg/mL), chloramphenicol (CHL; ‡ 32 lg/
mL), ciprofloxacin (CIP; ‡ 4 lg/mL), gentamicin (GEN;
‡ 16 lg/mL), kanamycin (KAN; ‡ 64 lg/mL), nalidixic acid
(NAL; ‡ 32 lg/mL), streptomycin (STR; ‡ 64 lg/mL), tri-
methoprim/sulfamethoxazole (SXT; ‡ 4/76 lg/mL), and
tetracycline (TET; ‡ 16 lg/mL). Inoculation of panels was
carried out according to the manufacturer’s instructions.
CLSI-specified control strains of E. coli, Staphylococcus aureus,
Enterococcus faecalis, and Pseudomonas aeruginosa were used to
validate each batch of plates. Strains displaying resistance to
‡ 3 classes of antimicrobial agents tested were defined as ex-
hibiting MDR.

Plasmid replicon and resistance gene typing

Isolates were also examined for the presence of plasmid
replicon types by using multiplex polymerase chain reaction
(PCR), as previously described (Carattoli et al., 2005; Johnson
et al., 2007c). Additionally, selected isolates were examined
for the presence of class 1 integron-associated genes using
primers designed in this study (Table 2). PCR was performed
as previously described (38). Amplicons were visualized on
2% TAE agarose gels alongside appropriate size standards
(Minnesota Molecular, Inc.). Reactions were performed
twice, and, if a discrepancy was identified, they were re-
peated again.

Virulence gene and phylogenetic typing

For all isolates, multiplex PCR-based genotyping for 32
ExPEC-associated virulence factor-encoding genes (VFs) was
performed as previously described ( Johnson and Stell, 2000;
Rodriguez-Siek et al., 2005b). Some of these data are previ-
ously described (Rodriguez-Siek et al., 2005a, 2005b; Johnson
et al., 2007a, 2008). Determination of major E. coli phylogenetic
group (A, B1, B2, and D) was done according to the inter-
pretive approach described by Clermont et al. (2000).

Statistical methods

Comparisons of proportions were tested by using Fisher’s
exact test (two-tailed) or Chi-squared distributions (Snedecor

Table 1. Escherichia coli Strains Used in This Study

Group N Source Dates of isolation Country

APEC 909 Lesions of commercial broilers and turkeys
with colibacillosis

1990–2005 United States

Avian fecal Escherichia coli 422 Feces of healthy commercial broilers and turkeys 1990–2004 United States
UPEC 559 Urine of human patients with bacteriuria

(with or without symptoms)
1995–2003 United States

NMEC 70 Cerebrospinal fluid isolates from human
neonates with meningitis

1989–1997 The Netherlands

Human fecal E. coli 156 Rectal swabs of healthy humans 1995–2004 United States
Human vaginal E. coli 86 Vaginal swabs from healthy women 1999–2001 Japan

APEC, avian pathogenic E. coli; UPEC, uropathogenic E. coli; NMEC, neonatal meningitis-associated E. coli.
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and Cochran, 1989; Westfall, 1999) using SAS. Hierarchical
two-way clustering, which clusters data based on overall
traits on both the X and Y axis, was performed on the raw MIC
values and visualized by using JMP for a graphical display of
all characters used, in the context of the groups obtained from
the cluster analysis ( Johnson et al., 2008). Overall similarity
relationships among the individual isolates with regard to VF
profiles and phylogenetic group were assessed by using
principal coordinates analysis (PCoA), a multivariate tech-
nique related to correspondence analysis enabling plotting of
the major patterns within a dataset (Peakall and Smouse,
2006). By means of Genalex6 (Peakall and Smouse, 2006),
PCoA was applied to the entire dataset. Each axis in PCoA
represents a unique weighted composite of all the individual
variables in the dataset. Individual isolates were assigned
values on each axis on the basis of study variables and each
variable’s weighting factor on the particular axis. These val-
ues (for pairwise combinations of the first three axes) were
plotted as a series of Cartesian grids, to show the distribution
of the individual isolates (and their respective source groups)
in two-dimensional space. They were also used in multivari-
ate analysis of variance (MANOVA) to determine whether the
comparison groups differed significantly according to the first
three PCoA axes. If the initial multivariate ANOVA identified
a significant overall difference, then univariate ANOVA was
used to test pairwise comparisons of individual groups ac-
cording to each PCoA axis, with use of a Bonferroni correction
for multiple post-hoc comparisons as appropriate.

Results

ExPEC and commensal E. coli differ in their
antimicrobial susceptibilities and plasmid
replicon possession

The 2202 total E. coli isolates were examined for 67 traits,
including susceptibility to 14 antimicrobial agents, possession
of 17 plasmid types, possession of 32 ExPEC virulence genes,
and E. coli phylogenetic group membership. The goal of this
work was to identify associations between MDR, plasmid
replicon content, and virulence genotype. Compared with
avian commensal E. coli (n = 422), APEC isolates (n = 909) ex-
hibited a significantly greater prevalence of resistance
( p <0.05) to AMP, GEN, KAN, STR, SXT, and TET (Table 3),
and a significantly higher prevalence of the IncB/O, IncP1-a,
IncFIIA, IncFIB, IncN, and IncHI2 replicons. Similarly, com-

pared with human fecal E. coli (n = 156), UPEC (n = 559) ex-
hibited a significantly greater prevalence of resistance to
AMP, CHL, KAN, STR, SXT, and TET, and NMEC (n = 70) had
a significantly higher prevalence of resistance to STR, and a
significantly higher prevalence of the IncB/O, IncP1-a, and
IncFIB plasmid replicons. Likewise, compared with the hu-
man vaginal E. coli, NMEC had a significantly higher pos-
session of the IncB/O, IncP1-a, and IncFIB plasmid replicons.
When analyzed by phylogenetic group, the group B2 isolates
had a lower prevalence of antimicrobial resistance, whereas
the group A and B1 isolates tended to have a higher preva-
lence of resistance (Table 3). The B2 isolates also had a lower
prevalence of some plasmid replicon types, including IncP1-a
and IncI1 (Table 3).

Overall, 37.4% of isolates were susceptible to all antimi-
crobial agents tested, with most of the pan-susceptible isolates
belonging to the UPEC group (Fig. 1). Among the remaining
62.6% of isolates, 20 distinct resistance profiles shared by 15 or
more isolates were identified (Fig. 2). Among these MDR
isolates, two profiles were identified with ‡ 8 resistances:
AMP-AUG-CHL-FOX-GEN-STR-TET-TIO (n = 41) and AMP-
AUG-CHL-FOX-GEN-KAN-STR-TET-TIO (n = 34); these oc-
curred only among avian-source isolates. Overall, MDR ( ‡ 3
resistances) was most prevalent among APEC (34.9%) and
AFEC (31.3%) isolates, and was less prevalent among UPEC
(19.5%), NMEC (11.4%), and human commensal isolates
(10.3%).

Associations between antimicrobial susceptibility
and plasmid replicon type

Comparisons of drug-resistant and drug-susceptible iso-
lates according to plasmid replicon content showed that
several plasmid types occurred in a significantly higher pro-
portion of resistant isolates ( p <0.05) than of their susceptible
counterparts (Table 4). Chi-squared distributions were also
used to identify significant associations between plasmid re-
plicon type and resistance phenotype (Table 5). Using both
approaches, several replicon types were strongly associated
with MDR. Replicons associated with the greatest numbers of
resistance markers included IncA/C (resistance to AUG,
AMP, AXO, CHL, CIP, FOX, GEN, KAN, STR, SXT, TET, and
TIO), IncP1-a (GEN, KAN, NAL, STR, and TET), IncI1 (AMP,
AUG, AXO, GEN, KAN, NAL, STR, TET, and TIO), and In-
cFIB (AUG, AXO, GEN, KAN, STR, and TIO).

Table 2. Novel Primers Used in Polymerase Chain Reaction Studies

Primer Gene Description Sequence (5¢ to 3¢)
TAnneal

(�C)

Predicted
amplicon
size (bp)

QAC F qacED1 Quaternary ammonium compound
resistance gene

GCCCCTTCCGCCGTTGTCATAATC 63 250
QAC R CGGCCTCCGCAGCGACTTCC
SULI F sulI Sulfonamide resistance gene CGCCGCTCTTAGACGCCCTGTCC 63 405
SULI R CAACGGTGGCGCCCAAGAAGGAT
INT F intI1 Integrase gene for class 1 integrons CACTCCGGCACCGCCAACTTTC 63 490
INT R GAACGGGCATGCGGATCAGTGAG
MERA F merA Mercury resistance gene GATCCGCGCCGCCCATATCGCCCATCTG 63 250
MERA R CACGCGCTCGCCGCCGTCGTTGAGTTG
TETA F tetA Tetracycline resistance gene CGGGGCGACTGGGGCGGTAGC 63 372
TETA R CAAAGCGCGGCCGGCACCTGTC
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Associations of virulence gene content
with antimicrobial susceptibility and plasmid
replicon type

Among human isolates, significant associations of VF
presence with individual resistance phenotype included those
of kII, pap, ibeA, fyuA, iutA, traT, iha, and afa individually
with AMP resistance; and of ibeA, bmaE, iutA, gafD, and afa
individually with TET resistance (Supplementary Table S1;
Supplementary Data are available online at www.liebertonline
.com/fpd). Among avian isolates, significant associa-
tions included those of cvaC, iss, iutA, and traT individu-
ally with resistance to FOX, GEN, KAN, STR, and TIO,
individually.

Similar analyses were performed to identify associations of
plasmid replicon type with VFs (Supplementary Table S1).
Among human isolates, highly significant associations in-

cluded those of the IncFIB plasmid type with kI, kII, malPAI,
ibeA, fyuA, cvaC, iss, iutA, traT, and fliC individually, and of
the IncB/O plasmid type with cvaC and iss individually.
Among avian isolates, significant associations included those
of the IncFIB plasmid type with kI, ireA, ibeA, fyuA, cvaC, iss,
iutA, and traT individually; of the IncN plasmid type with pap,
ompT, ireA, fyuA, cvaC, iss, and iutA individually; and of
several other plasmid types (i.e., IncB/O, IncA/C, IncP, In-
cFIIA, and IncI1) with cvaC, iss, and iutA individually.

Class 1 integron possession is associated with Tn21,
Tn10, and multiple plasmid replicon types

Due to the previously established association of E. coli MDR
with class 1 integrons, a subset of 1244 isolates were also ex-
amined for class 1 integron genes (intI1, sulI, and qacED1), and
merA and tetA, which are components of Tn21 and Tn10,

Table 3. Prevalence of Antimicrobial Resistance and Plasmid Replicon Types Among 2202 Escherichia coli

Isolates from Humans and Poultry

Prevalence of trait within each group (column percent)

Trait Avian Human Phylogenetic group

Category
Specific

trait
APEC

(n = 909)
Avian fecal
(n = 422)

UPEC
(n = 559)

NMEC
(n = 70)

Human fecal
(n = 156)

Human vaginal
(n = 86)

A
(n = 641)

B1
(n = 310)

B2
(n = 753)

D
(n = 498)

Resistance AMI 0 0 0 0 0 0 0 0 0 0
AUG 19 13.0 0.9 4.3 2.6 0 19.5 16.8 3.6 7.2
AMP 34.4 26.5a 36.5b 25.7c 20.5d 43 38.4 31.9 30.5 28.3
FOX 15.6 12.6 0.0 0 1.3 0 17.2 11 2.7 6.6
TIO 11.9 10.7 0 0 0 0 13.1 10 1.5 5.4
AXO 13.6 12.6 0 0 0 0 15.1 10.0 2.9 5.4
CHL 9.5 9.2 9.8b 4.3c 3.2d 8.1 11.9 7.7 6.1 9.8
CIP 1 0.2 0.4 0 0 0 1.1 0.6 0.1 0.4
GEN 25 17.1a 1.3 0 0 1.2 18.7 23.2 5.8 14.3
KAN 24.6 18.1a 8.2b 1.4 1.3 2.3 21.5 18.7 11.3 14.1
NAL 4 4.3 1.6 0 0 3.5 3.4 5.5 1.7 2.8
STR 52.5 44.5a 21.1b 22.9b 7.1d 30.2 47.6 43.5 24.3 42.8
SXT 11.1 7.3a 16.5b 7.1 8.3 9.3 9.8 10.0 10.6 15.3
TET 35.8 49.1a 22.4b 15.7 13.5 17.4 40.7 38.1 19.1 36.3

Replicon B/O 14 4.3a 14.5 48.6b,c 14.1 7 16.2 13.5 10.9 12
FIC 6.8 5 1.1 4.3 2.6 1.2 5.1 4.5 2.9 5.6
A/C 6.7 4 0.9 0 0 0 8.6 3.2 1.6 1.2
P 19.4 8.1a 0.7 11.4b,c 1.3 2.3 14.2 15.2 3.1 13.1
T 0.4 0 0 0 0 0 0.2 0 0 0.6
K/B 1.4 0.9 0 2.9 0.6 0 0.8 1.6 0.7 1
W 0 0 0.2 0 0 1.2 0 0 0 0.4
FIIA 12.8 4.7a 3 1.4 1.3 0 5.1 9 2.7 15.1
FIA 2.1 5.5a 2.5 1.4 3.2 0 3.4 2.6 2.7 2.4
FIB 84.8 32.7a 32.9b,c 85.7b,c 44.9d 66.3 60.4 51 56.3 62.4
Y 3.7 1.9 2 1.4 4.5 4.7 3.3 5.8 1.5 3
I1 35.9 32.2 4.3 5.7 7.1 5.8 35.1 36.8 9.6 19.1
X 0.3 0.5 0 0 0 1.2 0.5 0.3 0.3 0
HI1 3.7 7.3 2.5 0 1.3 0 2.5 3.9 3.5 5.4
N 7.8 3.8a 0.2 0 0 0 2 1.3 1.2 12.4
HI2 3 0.9a 0.2 0 0 0 2.2 1.9 0.4 1.8
L/M 2.8 4.5 0 0 0.6 0 0.8 3.5 2.1 2.6

aIndicates significantly different from APEC ( p <0.05).
bIndicates UPEC or NMEC significantly different from human fecal E. coli ( p <0.05).
cIndicates UPEC or NMEC significantly different from human vaginal E. coli ( p <0.05).
dIndicates human fecal E. coli significantly different from human vaginal E. coli ( p <0.05).
AMI, amikacin; AUG, amoxicillin/clavulanic acid; AMP, ampicillin; FOX, cefoxitin; TIO, ceftiofur; AXO, ceftriaxone; CHL, chloram-

phenicol; CIP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; STR, streptomycin; SXT, trimethoprim/
sulfamethoxazole; and TET, tetracycline; Remaining traits are plasmid replicon types.
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respectively (Liebert et al., 1999). The three class 1 integron
genes were jointly present in 344 (27.7%) of the isolates
examined, presumptively defining the presence of class 1
integrons (Table 6). Of the presumptive class 1 integron-
containing isolates, 55.2% contained merA and 66.6% con-
tained tetA, values significantly greater than for the remaining
isolates (2.2 and 13.0%, respectively; p <0.001). Plasmid re-
plicon types significantly associated with class 1 integron

positivity included IncA/C, IncP1-a, IncFIB, and IncI1. The
only pathotype significantly associated with class 1 integron
positivity was APEC, which comprised 89% of the isolates
positive for class 1 integron genes (vs. 59.7% of class 1 in-
tegron-negative isolates; p <0.0001).

FIG. 1. Proportions (%) of isolate sources (y axis) relative to
number of resistance phenotypes possessed (x axis). Each bar
depicts the total source distribution of isolates relative to
number of phenotypic resistances possessed.

FIG. 2. Most prevalent antimicrobial resistance profiles
among the 2202 Escherichia coli study isolates. The X-axis
depicts the number of isolates possessing a given profile,
using a stacked-bar presentation. Profiles with more than
fifteen isolates were included.

FIG. 3. Principal coordinates
analysis of 2202 human and avian
Escherichia coli isolates based on 67
traits, grouped by source of isolation.
The analysis included antimicrobial
susceptibility, plasmid replicon con-
tent, phylogenetic group, and viru-
lence gene content. Data shown are
the axis 1-versus-axis 2 plot. The axis
1-versus-axis 3 and axis 2-versus-
axis 3 plots yielded similar findings
(not shown).
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Principle Coordinates Analysis to compare
source groups

For an integrated analysis, PCoA was used to collapse the
entire dataset into a small number of derived variables (i.e.,
principal coordinates or axes). The PCoA showed a separation
of isolates based on source of isolation (Fig. 3), in which avian-
source isolates were usually separated from human-source
isolates. The overall ANOVA was highly significant ( p <0.01),
although only 18% of the variance in the dataset was ex-
plained by between-population differences, whereas 82% was
explained by within-population differences. In pairwise
comparisons between individual source groups according to
their values on individual PCoA axes using MANOVA, all
groups were significantly different ( p <0.05) from one another
on one or more axes (Supplementary Table S2).

Discussion

The goal of this study was to assess and compare avian and
human ExPEC and commensal E. coli for their antimicrobial
susceptibility, and to identify correlations between antimi-
crobial resistance phenotype, plasmid replicon possession,
virulence factor possession, and E. coli phylogenetic group
membership. Multiple studies have examined the antimicro-
bial susceptibilities of ExPEC and commensal E. coli, including
E. coli isolated from commercial poultry, the commercial farm
environment, retail poultry meat, human UTI, and the fecal
flora of healthy humans and animals (Schroeder et al., 2003;
Yang et al., 2004; Johnson et al., 2005a, 2005b; Zhao et al., 2005;
Miles et al., 2006; Diarrassouba et al., 2007; Wallmann et al.,
2007; Khaitsa et al., 2008; Ozawa et al., 2008; Ahmed et al., 2009;
Bonnet et al., 2009; Cook et al., 2009). However, fewer studies
have explored the correlations between antimicrobial resis-
tance and genetic traits, with contrasting results regarding the
correlations between antimicrobial resistance phenotype,
phylogenetic distribution, and virulence gene content ( John-
son et al., 2009b).

Our results showed that MDR and the plasmids and
mobile elements encoding for MDR are widespread among
avian-source E. coli, irrespective of the clinical status of their

host of isolation, while being only sporadically found among
human-source E. coli isolates. When we compared VFs and
resistance phenotype, certain highly significant correlations
were observed. These included correlations between CHL
resistance and possession of iha and pap; AMP resistance and
possession of afa, iha, and iutA; and SXT resistance and
possession of afa and iutA. Precedent exists for the associa-
tion between VF and MDR. For example, it has been previ-
ously shown that MDR is common in bovine isolates
carrying the afimbrial AfaE-VIII adhesin (Girardeau et al.,
2003). In addition to these positive associations, though, a
greater number of individual VFs were negatively associ-
ated with resistance phenotypes, including genes such as kI,
kII, papACEFG, ompT, fyuA, sfa, fliC, and cdtB, and resistances
including FOX, GEN, STR, TET, and TIO. The nature of these
negative associations remains unclear.

A notable finding was the strong positive association of
avian-source isolates harboring APEC-associated VFs (cvaC,
iss, iutA, and traT), and a number of plasmid types (IncB/O,

Table 6. Plasmid Replicons Associated with Class 1
Integron-Positive Isolates

Prevalence of trait, column %

Trait
Integron-positivea

(n = 344)
Integron-negativea

(n = 900) p-value

merA 55.2 2.2 <0.0001
tetA 66.6 13.0 <0.0001
A/C 15.1 0.9 <0.0001
P 42.2 4.6 <0.0001
FIB 83.7 73.4 <0.0001
I1 50.9 19.0 <0.0001
Avian fecal 4.9 13.1 <0.0001
APEC 89.0 59.7 <0.0001
NMEC 2.9 6.6 0.012
UPEC 3.2 20.7 <0.0001

aIntegron-positive isolates were defined as those possessing intI1,
qacED1, and sul1. Only the traits significantly differing ( p <0.05)
between integron-positive and integron-negative groups are shown.

Table 5. Chi-Squared Distributions Between Plasmid Replicon Type and Resistance Phenotype on 2202 Isolates

AMI AUG AMP FOX TIO AXO CHL CIP GEN KAN NAL STR SXT TET

B/O +a + +
FIC + + ++
A/C ++ ++ ++ ++ ++ ++ + ++ + ++ + ++
P ++ + + ++ ++
T + +
K/B
W
FIIA + + + + ++ + + + ++
FIA + + ++ + + +
FIB ++ ++ ++ + ++ + ++
Y +
I1 ++ + + + ++ ++ + ++ ++
X +
HI1 ++
N + + + + + ++
HI2 +
L/M + ++

aIndicates a positive association between traits (‘‘+’’ = p <0.05; ‘‘++’’ = p <0.0001).
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IncA/C, IncP1-a, IncFIIA, IncFIB, IncI1, and IncN), with cer-
tain resistance phenotypes (FOX, GEN, KAN, STR, TET, and
TIO). These APEC VFs typically are encoded on IncFIB/In-
cFIIA plasmids known as ColV plasmids ( Johnson et al.,
2006a, 2006b). Although some ColV plasmids have been
shown to contain resistance modules, they seem to be rare
among ColV plasmids and typically involve Tn10-like ele-
ments encoding a limited number of resistances (Mellata et al.,
2009; Fricke et al., 2009a). However, APEC strains also com-
monly possess ColV virulence plasmids with co-transferring R
plasmids ( Johnson et al., 2005c, 2006c, 2007c). The results of our
replicon typing suggest that co-transferring ColV and MDR-
encoding plasmids are widely prevalent among APEC isolates.
Seemingly, then, the presence of an F plasmid in an avian E. coli
strain might enhance its ability to acquire and disseminate
other MDR-encoding plasmids, such as IncA/C, IncI1, and
IncP1-a plasmids. Certainly, though, the complexities of the
poultry production environment could also drive the selection
of multidrug-resistant APEC, as multiple selective pressures
exist (Singer and Hofacre, 2006). The mechanisms driving the
emergence of co-transferring ColV plasmids and MDR-
encoding plasmids need to be further investigated.

Regarding the commonality (or lack thereof) between hu-
man and avian-source E. coli, definitive conclusions are lim-
ited by our inclusion of isolates that differ temporally,
geographically, and by source of isolation. Nonetheless, our
results, as exemplified by the PCoA, suggest that although
some overlap exists between isolates from poultry and hu-
mans, overall relatively few human-source isolates resemble
the pool of avian-source isolates. Certainly, the human ExPEC
isolates generally lacked MDR, whereas the APEC isolates
had a high occurrence of MDR, and the two groups have
previously been shown to differ in their VF content ( Johnson
et al., 2004, 2005b, 2007a, 2008, 2009a). However, within-group
variation was extensive, and some of the multidrug-resistant
avian-source isolates fell within the human-source clusters,
and vice versa. This is supportive of previous work suggest-
ing that certain subsets of ExPEC are capable of zoonotic
transfer ( Johnson et al., 2007a, 2008). Thus, although the po-
tential for zoonotic transmission of multidrug resistant avian-
source clones to humans probably does exist ( Johnson et al.,
2007b; Manges et al., 2007; Price et al., 2007; Jakobsen et al.,
2010), the actual frequency of such transmission relative to the
entire human and avian ExPEC populations might be rela-
tively low.

The main MDR-associated plasmid types in this study were
IncA/C, IncP1-a, IncF, and IncI1. IncA/C plasmids have re-
ceived extensive recent attention because of their emergence
in human clinical and production animal settings, broad host
range, and ability to encode for extended-spectrum b-lacta-
mases (ESBLs) (Welch et al., 2007; Fricke et al., 2009b; Call et al.,
2010; Suzuki et al., 2010; Veldman et al., 2010). The IncA/C
plasmids identified were exclusive to avian-source isolates
and were associated with resistance to 12 or more of the an-
tibiotics tested. IncI1 and IncF plasmids have also been asso-
ciated with ESBL genes and MDR (Garcia-Fernandez et al.,
2008; Marcade et al., 2009; Woodford et al., 2009; Smet et al.,
2010; Sampei et al., 2010), and IncP1-a plasmids include the
‘‘Birmingham’’ plasmids known for their broad host range,
promiscuity, and carriage of resistance genes (Thomas and
Smith, 1987). Although MDR-encoding IncI1, IncF, and IncP1-
a plasmids were identified among human-source E. coli iso-

lates, their prevalence was low compared with that of avian-
source isolates. This again suggests that the transfer of these
elements, or of E. coli clones possessing these plasmids, from
poultry to humans might be rare. However, these isolates
were derived from multiple geographical sources, and these
populations are rapidly changing with regard to plasmid
possession and resulting MDR phenotypes. This underscores
the need for continued monitoring for these mobile genetic
elements.

Conclusions

Although disagreement exists regarding to what extent
multidrug-resistant, poultry-associated strains have emerged
and are persisting due to antimicrobial usage in the poultry
production environment (Smith et al., 2007a), it is evident that
MDR is now widespread in E. coli of poultry origin and is
associated with conjugative plasmids. It should be acknowl-
edged that there is bias in the dataset analyzed here with
regard to geographical and temporal origins, thus limiting our
ability to draw conclusions with regard to antimicrobial re-
sistance phenotypes between the groups analyzed. However,
this did not hamper our observations regarding the strong
correlations between resistance phenotype and plasmid con-
tent. It is essential that future efforts address the risk of
transfer of such plasmids from food animal bacterial popu-
lations to humans, and the underlying biological mechanisms
enabling the dissemination and persistence of these plasmids
among bacterial populations.
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